Scientific Report miR-10b expression in breast cancer stem cells supports self-renewal through negative PTEN regulation and sustained AKT activation
نویسندگان
چکیده
Cancer stem cells (CSCs) are linked to metastasis. Moreover, a discrete group of miRNAs (metastamiRs) has been shown to promote metastasis. Accordingly, we propose that miRNAs that function as metastatic promoters may influence the CSC phenotype. To study this issue, we compared the expression of 353 miRNAs in CSCs enriched from breast cancer cell lines using qRT– PCR analysis. One of the most altered miRNAs was miR-10b, which is a reported promoter of metastasis and migration. Stable overexpression of miR-10b in MCF-7 cells (miR-10b-OE cells) promoted higher self-renewal and expression of stemness and epithelial– mesenchymal transition (EMT) markers. In agreement with these results, inhibiting miR-10b expression using synthetic antisense RNAs resulted in a decrease in CSCs self-renewal. Bioinformatics analyses identified several potential miR-10b mRNA targets, including phosphatase and tensin homolog (PTEN), a key regulator of the PI3K/AKT pathway involved in metastasis, cell survival, and self-renewal. The targeting of PTEN by miR-10b was confirmed using a luciferase reporter, qRT–PCR, and Western blot analyses. Lower PTEN levels were observed in CSCs, and miR-10b depletion not only increased PTEN mRNA and protein expression but also decreased the activity of AKT, a downstream PTEN target kinase. Correspondingly, PTEN knockdown increased stem cell markers, whereas AKT inhibitors compromised the self-renewal ability of CSCs and breast cancer cell lines overexpressing miR-10b. In conclusion, miR-10b regulates the self-renewal of the breast CSC phenotype by inhibiting PTEN and maintaining AKT pathway activation.
منابع مشابه
miR-10b expression in breast cancer stem cells supports self-renewal through negative PTEN regulation and sustained AKT activation.
Cancer stem cells (CSCs) are linked to metastasis. Moreover, a discrete group of miRNAs (metastamiRs) has been shown to promote metastasis. Accordingly, we propose that miRNAs that function as metastatic promoters may influence the CSC phenotype. To study this issue, we compared the expression of 353 miRNAs in CSCs enriched from breast cancer cell lines using qRT-PCR analysis. One of the most a...
متن کاملMicroRNA-33b Inhibits Breast Cancer Metastasis by Targeting HMGA2, SALL4 and Twist1
MicroRNAs are a class of small noncoding RNAs that regulate gene expression post-transcriptionally either by inhibiting protein translation or by causing the degradation of target mRNAs. Current evidence indicates that miR-33b is involved in the regulation of lipid metabolism, cholesterol homeostasis, glucose metabolism and several human diseases; however, whether miR-33b contributes to the pat...
متن کاملDifluorinated-Curcumin (CDF) Restores PTEN Expression in Colon Cancer Cells by Down-Regulating miR-21
Despite recent advancement in medicine, nearly 50% of patients with colorectal cancer show recurrence of the disease. Although the reasons for the high relapse are not fully understood, the presence of chemo- and radiotherapy-resistant cancer stem/stem-like cells, where many oncomirs like microRNA-21 (miR-21) are upregulated, could be one of the underlying causes. miR-21 regulates the processes...
متن کاملAntagonism of miR-21 Reverses Epithelial-Mesenchymal Transition and Cancer Stem Cell Phenotype through AKT/ERK1/2 Inactivation by Targeting PTEN
BACKGROUND Accumulating evidence suggested that epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) characteristics, both of which contribute to tumor invasion and metastasis, are interrelated with miR-21. MiR-21 is one of the important microRNAs associated with tumor progression and metastasis, but the molecular mechanisms underlying EMT and CSC phenotype during miR-21 contribut...
متن کاملEMMPRIN Down-regulating miR-106a/b Modifies Breast Cancer Stem-like Cell Properties via Interaction with Fibroblasts Through STAT3 and HIF-1α
Extracellular matrix metalloproteinase inducer (EMMPRIN) is a heavily glycosylated protein and expresses in cancer cells widely, which plays important roles in tumor progression. However, the role of EMMPRIN in breast cancer stem-like cell properties by interaction with fibroblasts is not known. In the present study, we investigated the effects of fibroblasts on breast cancer stem-like cells. W...
متن کامل